

18MAT21

Second Semester B.E. Degree Examination, Jan./Feb. 2021 Advanced Calculus and Numerical Methods

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. In which direction the directional derivative of $x^{2} y z^{3}$ is maximum at $(2,1,-1)$ and find the magnitude of this maximum.
(06 Marks)
b. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at $(2,-1,2)$.
(07 Marks)
c. Show that $\vec{F}=(y+z) i+(z+x) j+(x+y) k$ is irrotational. Also find a scalar function ϕ such that $\vec{F}=\nabla \phi$.
(07 Marks)

OR

2 a. Evaluate $\int_{C} \vec{F}$.dr where $\vec{F}=x y i+\left(\hat{x}^{2}+y^{2}\right)$ j along the path of the straight line from $(0,0)$ to $(1,0)$ and then to $(1,1)$.
(06 Marks)
b. Verify Green's theorem in a plane for $\int\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the boundary of the region enclosed by $y=\sqrt{x}$ and $y=x^{2}$.
(07 Marks)
c. Verify stoke's theorem for vector,
$\vec{F}=\left(x^{2}+y^{2}\right) i-2 x y j$ taken round the rectangle bounded by $x=0, x=a, y=0, y=b$.
(07 Marks)

Module-2

3 a. Solve : $\left(4 D^{4}-8 D^{3}-7 D^{2}+11 D+6\right) y=0$.
(06 Marks)
b. Solve : $\frac{d^{2} y}{{d x^{2}}^{2}}-4 y=\cosh (2 x-1)+3^{x}$.
(07 Marks)
c. Solve : $\frac{d^{3} y}{{d x^{3}}^{3}}+\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=x^{2}-4 x-6$.
(07 Marks)

OR

4 a. Solve : $\frac{d^{2} y}{d x^{2}}+y=\tan x$ by the method of variation of parameters.
(06 Marks)
b. Solve : $x^{2} y^{\prime \prime}+x y^{\prime}+9 y=3 x^{2}+\sin (3 \log x)$.
(07 Marks)
c. The differential equation of a simple pendulum is $\frac{d^{2} x}{d t^{2}}+w^{2} x=F \sin x t$, where w and F are constants. If at $t=0, x=0$ and $\frac{\mathrm{dx}}{\mathrm{dt}}=0$, determine the motion when $\mathrm{x}=\mathrm{w}$.

Module-3

a. Find the P.D.E. of the family of all spheres whose centres lie on the plane $\mathrm{z}=0$ and have a constant radius ' r '.
(06 Marks)
b. Solve : $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$ for which $\frac{\partial z}{\partial y}=-2 \sin y$, when $x=0$ and $z=0$ if y is an odd multiple of $\frac{\pi}{2}$.
(07 Marks)
c. Find all possible solutions of one dimensional heat equations, $\frac{\partial u}{\partial t}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}$ using the method of separation of variables.
(07 Marks)

OR

6 a. Solve : $\frac{\partial^{2} \mathrm{z}}{\partial \mathrm{x}^{2}}+3 \frac{\partial \mathrm{z}}{\partial \mathrm{x}}-4 \mathrm{z}=0$ subject to the conditions that $\mathrm{z}=1$ and $\frac{\partial \mathrm{z}}{\partial \mathrm{x}}=\mathrm{y}$ when $\mathrm{x}=0$.
(06 Marks)
b. Solve: $(y-z) p+(z-x) q=(x-y)$.
(07 Marks)
c. Derive one dimensional wave equation in the standard form as, $\frac{\partial^{2} u}{\partial t^{2}}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
(07 Marks)

Module-4

7 a. Discuss the nature of the series,

$$
\frac{2}{3}+\frac{2.3}{3.5}+\frac{2.3 .4}{3.5 .7}+\ldots . .
$$

(06 Marks)
b. Prove that $J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cdot \cos x$
(07 Marks)
c. If $x^{3}+2 x^{2}-x+1=a P_{0}(x)+b P_{1}(x)+c P_{2}(x)+d P_{3}(x)$, find the values of a, b, c, d.
(07 Marks)

OR

8 a. Discuss the nature of the series, $\sum_{n=1}^{\infty} \frac{(n+1)^{n} \cdot x^{n}}{n^{n+1}}$
b. If α and β are two distinct roots of $J_{n}(x)=0$, prove that $\int_{0}^{1} x J_{n}(\alpha x) \cdot J_{n}(\beta x) d x=\frac{1}{2}\left[J_{n}^{\prime}(\alpha)\right]^{2}$ if $\alpha=\beta$.
(07 Marks)
c. Using Redrigue's formula obtain expressions for $\mathrm{P}_{0}(\mathrm{x}), \mathrm{P}_{1}(\mathrm{x}), \mathrm{P}_{2}(\mathrm{x}), \mathrm{P}_{3}(\mathrm{x}), \mathrm{P}_{4}(\mathrm{x})$.
(07 Marks)

Module-5

9 a. The Area of a circle (A) corresponding to diameter (D) is given below:

D	80	85	90	95	100
A	5026	5674	6362	7088	7854

Find the Area corresponding to diameter 105 using an appropriate interpolation formula.
(06 Marks)
b. Find the cubic polynomial which passes through the points $(2,4),(4,56),(9,711),(10,980)$ by using Newton's divided difference formula.
(07 Marks)
c. Find the real root of the equation, $x \sin x+\cos x=0$ near $x=\pi$ using Newton's Raphson method. Carry out three iterations.
(07 Marks)

$$
2 \text { of } 3
$$

OR

10 a. The following table gives the normal weights of babies during first eight months of life.

Age (in months)	0	2	5	8
Weight (in pounds)	6	10	12	16

Estimate the weight of the baby at the age of seven months using Lagrange's interpolation formula.
(06 Marks)
b. Find the real root of $\mathrm{x} \log _{10} \mathrm{x}-1.2=0$ by correct to four decimal places using Regula-Falsi method.
(07 Marks)
c. Use Simpson's $\frac{3^{\text {th }}}{8}$ rule to obtain the approximate value of $\int_{0}^{0.3}\left(1-8 x^{3}\right)^{\frac{1}{2}} d x$ by considering 3 equal intervals.
(07 Marks)

