

- 4 a. Solve: $\frac{d^2y}{dx^2} + y = \tan x$ by the method of variation of parameters. (06 Marks) b. Solve: $x^2y'' + xy' + 9y = 3x^2 + \sin(3\log x)$. (07 Marks)
 - c. The differential equation of a simple pendulum is $\frac{d^2x}{dt^2} + w^2x = F \sin xt$, where w and F are constants. If at t = 0, x = 0 and $\frac{dx}{dt} = 0$, determine the motion when x = w. (07 Marks)

1 of 3

18MAT21

Module-3

- 5 a. Find the P.D.E. of the family of all spheres whose centres lie on the plane z = 0 and have a constant radius 'r'. (06 Marks)
 - b. Solve : $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ for which $\frac{\partial z}{\partial y} = -2 \sin y$, when x = 0 and z = 0 if y is an odd multiple of $\frac{\pi}{2}$. (07 Marks)

c. Find all possible solutions of one dimensional heat equations, $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$ using the method of separation of variables. (07 Marks)

OR

- 6 a. Solve: $\frac{\partial^2 z}{\partial x^2} + 3\frac{\partial z}{\partial x} 4z = 0$ subject to the conditions that z = 1 and $\frac{\partial z}{\partial x} = y$ when x = 0. (06 Marks)
 - b. Solve: (y-z)p + (z-x)q = (x-y). (07 Marks)
 - c. Derive one dimensional wave equation in the standard form as, $\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$. (07 Marks)

<u>Module-4</u>

- 7 a. Discuss the nature of the series, $\frac{2}{3} + \frac{2.3}{3.5} + \frac{2.3.4}{3.5.7} + \dots$ (06 Marks)
 - b. Prove that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$
 - c. If $x^3 + 2x^2 x + 1 = aP_0(x) + bP_1(x) + cP_2(x) + dP_3(x)$, find the values of a, b, c, d.

OR

- 8 a. Discuss the nature of the series, $\sum_{n=1}^{\infty} \frac{(n+1)^n \cdot x^n}{n^{n+1}}$ (06 Marks) b. If α and β are two distinct roots of $J_n(x) = 0$, prove that $\int_0^1 x J_n(\alpha x) \cdot J_n(\beta x) dx = \frac{1}{2} [J'_n(\alpha)]^2$ if $\alpha = \beta$. (07 Marks)
 - $\alpha = \beta.$ (07 Marks) c. Using Redrigue's formula obtain expressions for P₀(x), P₁(x), P₂(x), P₃(x), P₄(x). (07 Marks)

Module-5

9 a. The Area of a circle (A) corresponding to diameter (D) is given below:

D	80	85	90	95	100
А	5026	5674	6362	7088	7854
D' 1 .1				. 1.	1.0

Find the Area corresponding to diameter 105 using an appropriate interpolation formula.

- b. Find the cubic polynomial which passes through the points (2, 4), (4, 56), (9, 711), (10, 980) by using Newton's divided difference formula. (07 Marks)
- c. Find the real root of the equation, $x \sin x + \cos x = 0$ near $x = \pi$ using Newton's Raphson method. Carry out three iterations. (07 Marks)

- (07 Marks)
- (07 Marks)

OR

 10
 a. The following table gives the normal weights of babies during first eight months of life.

 Age (in months)
 0
 2
 5
 8

 Weight (in pounds)
 6
 10
 12
 16

Estimate the weight of the baby at the age of seven months using Lagrange's interpolation formula. (06 Marks)

- b. Find the real root of $x \log_{10} x 1.2 = 0$ by correct to four decimal places using Regula-Falsi method. (07 Marks)
- c. Use Simpson's $\frac{3}{8}^{\text{th}}$ rule to obtain the approximate value of $\int_{0}^{0.3} (1-8x^3)^{\frac{1}{2}} dx$ by considering

3 equal intervals.

Ś

(07 Marks)